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This work addresses some electronic aspects of electron transfer at large 
distances when the donor and acceptor are attached to a polymeric structure. 
The transfer-matrix approach and a Green's function formalism are used to 
obtain an expression for the transition matrix element Tab. The results are 
analyzed and compared with previous results obtained from related models. 
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1. Introduction 

This work is interested in electron transfer over large distances in biological 
systems. In metalloproteins, for example, electron migration can take place from 
donor to acceptor (spacially localized states) bound to a polymeric chain. 

Some aspects of electron transfer in biological systems are related to similar 
processes in other systems: recharging in gas-phase atomic and molecular col- 
lisions, oxidation-reduction reactions in solution or at interface with electrodes, 
and electron transport in the solid state. The special features of each particular 
system depend on the structure and interactions of the donor-acceptor pair and 
the surrounding medium. 

The properties of biological systems are the result of the specific organization of 
the macromolecular structure. From the study of biological phenomena it has 
been established that electron transfer is unassisted by carriers [1]. De Vault has 
called attention to the special role of high-frequency intramolecular vibrational 
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modes (--400 cm -~) on the biological electron transfer process, which is not so 
strongly dependent  on solvent fluctuations [2]. 

The electron transfer theory bears a close relationship to the theories of  radiation- 
less transitions and transport of small polarons. In both of these theories a central 
role is played by the interaction between electronic and nuclear motion. It has 
been assumed that the nuclear motion is quite slow to follow the electronic 
motion during the process (Franck-Condon principle) [3], and there is negligible 
overlap between electronic wave functions of  neighboring sites (the molecular 
crystal model) [4]. In a polymeric chain the overlap of  wavefunctions belonging 
to neighboring sites is not negligible, On the other hand, proteins are strongly 
aperiodic. Localized states in proteins are induced by chemical and conforma- 
tional aperiodicity. 

A unified theoretical framework exists at the present to describe electron transfer 
processes [5]. The differences between the classical, semiclassical and quantum 
formulations are mainly in the way each one treats the nuclear coordinates [6]. 
The electron transfer rate is obtained as a product  of  an electronic factor and a 
nuclear Franck-Condon factor. For intramolecular processes the whole depen- 
dence of the rate on the donor-acceptor separation distance is attributed to the 
electronic interaction. The coupling of the electronic motion with the other degrees 
of  freedom in the whole system provides thermalization which is essential for 
the irreversibility of  the electron transfer process. 

2. Formulation of  the electron transfer theory 

The electron transfer rate is related to the transition rate from the initial eigenstate 
~i to the final eigenstate ~bf of  an unperturbed Hamiltonian. The transition is 
induced by a small interaction potential V. By using Ferms golden rule 

k = (2,n'/h) ~ I v,A%( k (1) 
it- 

where V~ s is the matrix element of  the interaction potential and the sum runs 
over a manifold of final vibronic eigenstates, with the same energy of the thermally 
averaged initial eigenstate. 

Within a Born-Oppenheimer  approximation it is possible to write k as a product  
of  an electronic factor and an averaged sum over overlap integrals of vibrational 
wave functions (Franck-Condon factor): 

k = ( 2 ~ / h ) l  Tab r(F,, (7.) (2) 

The electronic matrix element Tab contains the distance dependence. If  the initial 
and final electronic states are localized, and a small exchange interaction is 
assumed, Tab decreases exponentially with the separation (R) of  the two trapping 
sites: 

Tab ~-- A exp (-aR). (3) 



Donor acceptor interaction in metalloproteins 161 

The form of A and ~ are model dependent. The mechanism of the process must 
be determined by the knowledge of the electronic structure and interactions 
between the two trapping sites and their surrounding medium. 

The Franck-Condon factor contains the energetics of the process. It takes account 
of the nuclear coordinates coupled to the electronic motion. From Eq. (1), with 
the eigenstates represented by a product of electronic and vibrational wave 
functions, and an explicit expression for the density of states, one obtains: 

(F.C.)={ ~ [(XbmlXam)2~(Ebm-Ean)exp(-Ean//kr)}/~exp(-Ean/]gr). 
rl,  m 

(4) 

Some important questions to be discussed within this theoretical framework are 
related to adiabaticity [7], Born-Oppenheimer approximation [8], Franck- 
Condon approximation [8, 9] and nuclear tunneling [10]. This work addresses 
some aspects of the electronic interaction between a donor and an acceptor bound 
to a polymeric chain. 

3. Electronic interaction 

The Robin and Day [11] classification of  mixed valence compounds has been 
defined in terms of the time scale of some experimental measurements [12]. Three 
classes of compounds were identified: I-completely localized, II-partially local- 
ized, III-completely delocalized. The intermediate class (II), with weakly interact- 
ing sites, is of particular interest to the present work. In these systems the lifetime 
of the localized state depends critically on the electronic structure of the two 
trapping sites and of the bridging groups. The electronic intereaction is determined 
by the small overlap between the localized wave functions and the bridging 
groups and by the electronic delocalization through those groups. A through 
bond mechanism was first considered by Taube and Myers [13]. The pioneering 
work by Halpern and Orgel [14] discussed the through bond interaction using 
the mechanisms of double exchange and superexchange. Within a double 
exchange framework they considered extending bridging groups. The quasi- 
infinite 1-D periodic model for the bridging groups was applied by McConnell 
[15] to the problem of electron transfer between aromatic groups. McConnell 
assumed a very deep localized site, the energy of the localized state related to 
the middle of the band E much larger than the bandwidth 4/3. 

Localized states, induced by conformational changes, or associated with the 
presence of impurities or defects, are of  great significance to electron transport 
through polymeric systems. Small concentrations of impurities or defects can 
modify the electronic conductivity of polymeric molecules by several orders of 
magnitude. Transition metal ions are found in metalloproteins in concentration 
of impurities. Proteins do not possess an intrinsic conductivity; their conduction 
states are several eV above the ground state, but there is some evidence that the 
protein mediates the donor-acceptor interactions [16]. Protein modification can 
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change its conductivity by 6 orders of  magnitude (for example: methylglyoxal 
modification at lysine residues of  collagen) [17]. 

Brandi, Koiller and Ferreira have applied the transfer-matrix approach to study 
localized states on the electronic structure of polymeric molecules. It has been 
shown that localized states must be found in the gap region [18]. The method 
was applied to treat the localized state of trans-(CH)x, whose conductivity is 
enhanced over 12 orders of  magnitude due to doping [20]. 

The transfer-matrix approach is a very convenient method to treat the electronic 
interaction between two impurity sites (a donor  and an acceptor) in a quasi-infinite 
1-D periodic system. The result must be similar to those obtained by Petrov [16] 
and by Davydov [1]. The periodic approximation for the bridging groups was 
successful for describing the distance dependence of the electronic interaction 
in the mixed valence dithiaspirocyclobutane molecules [21]. The exponential 
decay is obtained from the transfer-function T related to the translational sym- 
metry of the periodic bridging Structure. This formalism allows us to consider, 
with some approximation, the results of a 1-D disordered system. 

4. Model Hamiltonian 

A Wannier-like one-electron Hamiltonian is considered at site representation. 

H = ~ eia~ai + ~, v~(a~aj + atjai) (5) 
i i , j >  i 

The operator a~(ai) creates (destroys) one electron at site i. The intersite exchange 
interaction v U is assumed to be different from zero only for nearest neighbors 
(i.e.j = i • 1). In this kind of  phenomenological Hamiltonian the electron-electron 
interaction term is missing. 

The complete Hamiltonian also contains a sum of vibrational energies, and the 
e lectron-phonon (vibronic) interaction can be accounted by the dependence of 
e~ and u~ on the nuclear coordinates [9]. The influence of the vibronic coupling 
on the intersite interaction is discussed in another work [9b]. 

All matrix elements of the Green's function in the site representation can be 
obtained from the Dyson's equation E G  = 1 + HG. The advantage of the Green's 
function formalism is that it gives direct information on transition energies and 
amplitudes from a reference state. From the poles of  its diagonal elements the 
energy eigenvalues are obtained and from the residues of its off-diagonal elements 
the intersite interactions. The spectrum associated with the pure, one orbital per 
site, periodic chain is constituted by one band with bandwidth 4/3 (band edges 
in -2/3 and +2/3), where/3 is defined as/3 = v~,i• The energy reference is setting 
in the middle of  the band chosen by e~ = 0. 

5. The one impurity problem 

This problem was already discussed in detail by using the transfer-matrix 
approach with long-range interactions [18]. The results are reproduced below in 
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a nearest-neighbors approximation. The one impurity problem can be studied by 
a symmetry breaking at a site of the periodic chain. One impurity is assumed at 
site 0 with energy eo and interaction with its nearest-neighbors 13o = Vo,• (Fig. 1). 

From the Dyson's equation 

EG o = ~o + ~, H, kGkj (6) 
k 

and the model Hamiltonian with nearest-neighbors interaction, a set of equations 
is obtained 

(E  - eo)Goo = 1 + 2/3oGlo 

EGlo =/3oGoo +/3G2o 

EG2o =/3Glo+/3G3o 

(7) 

where outside the defect region, i.e. 1i1>2, the characteristics of the periodic 
chain is recovered. From the third equation, and all following equations, the 
transfer function can be obtained by defining G,§ = TGn,o[18]. 

E =  /3( T - '  + T) 

and 

T = IE • (E 2 --4/32)1/2]/2/3 (8) 

the following expressions for Gl0 and (3oo are also obtained from Eq. (7) 

Glo = [/3o/(E - /3  T)]Goo 

Ooo = {E - Co-12/3~/(E - /3T)]}- '  (9) 

from Goo the energy of the localized state is determined 

E = eo+2/3~/(E - f i t )  (10) 

and the behavior of the localized state wave function at any site n can be described 
by the residue of G.,o at the pole [19] 

G,,o = t/3o/ ( E - /3T) ]T" - '  Goo (11) 

outside the defect region Gn,o decays with T n-~ as also does the wave function. 
The exponential decay is characterized by defining 

a = - a  l l n T  (12) 

where a is the unit cell dimension of the periodic structure. 
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The exponential  decay is characteristic of  localized states in 1-D disordered 
systems [22]. Actually, the randomic distribution of side groups makes the protein 
chain a somewhat  disordered system. However  the fluctuation in el appears to 
be sufficiently small and the periodic approximation has been successfully used 
[16]. 

6. The two impurity problem 

The effective interaction between two impurities at sites 0 and n, with unperturbed 
energies eo and en and intersite interactions (defect recions) Vo,• and 
v . . . .  , =  13n, can be obtained from the results for a disordered chain [22]. 

(3//= IE - ei - A i ]  -1 (13) 

where A~, usually called "the self energy of  site i)) is 

Ai = t + + t7 

and 

t7 = v~,• ( E - e i+x-  ti~,) (14) 

is a continued fraction. For localized states the "renormalized energy expression" 
for A; converges [23]. Quick convergence can be assumed for strongly localized 
states. Outside the defect region is possible to identify 

t T = 1 3 T  • (15) 

where T is the same as defined by Eq. (8). 

The intersite interaction can be obtained from 

Gn,o = l-I (t+/Vi, i+l aoo (16) 
i = 1  

which gives, within the defect regions 

Glo = [13o/(E - 13T)]Goo 

G.,o = {13 . / (E  - e .  - [ 1 3 2 / ( E  - 13T)])}G.-~,o (17) 

outside the defect region the translational symmetry is recovered and 

an 1 ,o  = T"-ZGao (18) 

From the above relations 

G.,o = {213o13./[(E - e . ) ( E  - 13T)3} T"-2Goo (19) 

which can be interpreted with an effective interaction between the two impurity 
sites 

V.,o = [213o13./(E - 13T)]T "-2. (20) 
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Fig. 2. Topology of the periodic chain with the impurity sites used to obtain Eq. 21(a) and Eq. 23(b) 

From the previous definition of a, and using the expression for T in the 
denominator 

V.,o = {4/3o/3./[E + ( E  2 --4/32)1/2]} exp ( - a R )  (21) 

The expression for a is the same already obtained by Davydov [1] and Petrov [16] 

a = a -1 In {2/3/[E - ( E  2 -4/32)1/2]} (22) 

The choice of the minus sign in T was used as usual outside the band region 
(18, 19]. 

The pre-exponential factor of Davydov and Petrov can be obtained if, instead 
of two impurities at sites 0 and n, a donor and an acceptor are bound to each 
of these sites (Fig. 2b). In this case 

V,,0 = [/3o/3,/(E 2-4/32)1/21 exp ( - a R )  (23) 

In the case of  a finite chain bridging the donor to the acceptor, and with the 
approximation E<< 2/3, the result previously obtained by McConnell [15] is 
reproduced 

V..o = ( / 3 o f l . / E ) ( f l / E )  "-2. (24) 

The same finite chain, with the assumption of E = 0 ("localized state" in the 
middle of the band) and even n -  1, reproduces Larsson's result [24] 

V,,o = flo/3,//3 (25) 

Both results are two times larger when the infinite chain is introduced. Within 
the present formalism, localization or delocalization can be defined in terms of 
the transfer function T. If  T is real the state is localized (IE[ > 2/3). 

7. Results and discussion 

It is quite difficult to compare theoretical and experimental electron transfer rates 
for real biological systems. It is of particular interest to know experimental data 
for a donor-acceptor pair at different distances, and different pairs at the same 
distance, in some well-defined polymeric structure. The parameters of Eqs. (21) 
and (23) can be related to experimentally observable redox potentials [21], 
intensity and position of metal-ligand charge transfer bands [25] and to the 
bandwidth of the intervening band (valence or conduction band of the bridging 
structure). 
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Electron transfer rates at fixed and known distances have been measured by Gray 
and his collaborators in penta-amineruthenium-histidine modified ferricyto- 
chrome c [27] and azurin [27]. While the through space edge to edge distance is 
11.8 A in both of the proteins, the closest distance through the peptide chain in 
modified azurin is nearly twice that in modified cytochrome c. The observed rates 
are weakly dependent on the temperature and about fifteen times larger for 
modified cytochrome c [27]. However, the two chains are quite long (136.3 Zk 
and 70.5 t~, respectively [28]) and the question whether through bond mechanism 
is effective remains open [27]. Results obtained by Isied and Vassilian [29] using 
polypeptides as bridging groups, suggest a through bond mechanism. The small- 
ness of the observed rates may be partially due to the large reorganization of the 
nuclear coordinates at the Co site [30]. 

It must be observed that the bridging structure may be different from the main 
protein chain. Petrov [16] estimated an interaction through a secondary chain 
(with hydrogen bonds between polypeptide chains) assuming the same value for 
E but an exchange parameter five times smaller ( f l '=f l /5) .  For a particular 
choice of parameters it competes with the main chain over a distance R'= R/3 
(in fact the relation is R' =[a'(fl ' ,  a')/~(fl, a)]R). Although in principle observ- 
able, the width of conduction and valence bands of proteins cannot be obtained 
from experimental data. Ab initio calculations by Ladik, Suhai and Seel [31] 
estimated bandwidth of 1.4 eV (conduction) and 2.1 eV (valance) for the main 
chain and ten times smaller ones for a secondary chain. An interesting aspect of 
the present model is to make clear that the specific result for Tab depends on the 
choice of a particular "pathway" for the electronic interaction, and on the way 
the donor and acceptor are attached to that one. 

Some estimations of a and Tab(V,,o in Eq. (21) and (23) are shown at Table 1 
and Table 2, respectively. To analyse them, and to compare with previous results 
obtained from related mechanisms, the classical Halpern and Orgel [14] direct 
and double exchange estimations and some values for a and Tab from a simple 
square well tunneling model are also presented. Although these models had 
already been widely discussed in the literature, it is interesting to reproduce the 
main results and to analyse the relationship with the present work. 

Table 1. a (z~k -1) with different choices of E and/3 and a = 4.7 
[28] 

/3 (eV) 
E 0.50 0.25 0.10 0.05 

1.5 0.20 0.38 0.58 0.72 0.63 
2.0 0.28 0.44 0.64 0.78 0.73 
2.5 0.33 0.49 0.68 0.83 0.81 
3.0 0.37 0.53 0.72 0.87 0.89 
3.5 0.41 0.56 0.76 0.90 0.96 
4.0 0,44 0.59 0.78 0.93 1.03 



D o n o r  accep tor  in te rac t ion  in  me ta l lop ro te ins  

Table 2. Theore t i ca l  e s t ima ted  results  for Tab wi th  E = 2,5 eV (a) and  E = 

3.5 eV (b). C a l c u l a t i o n s  us ing  Eq. (21) and  Eq. (23) a s sume  ~ = 0 . 5  eV [28] 

and/30]3 . = 1 eV [25] 

167 

D o u b l e  
R(/~) Di rec t  [14] exchange  [14] Tunne l ing  (a) Tune l l ing  (b) 

5 1.98.10 -1 1.98 1.7.10 -2 8.2.10 -3 
10 2.64.10 -3 4,62.10 -2 3.0.10 -4 6.8.10 -5 

15 2.64.10 -5 1,32.10 -3 5.3.10 -6 5.6.10 -7 

20 1.98.10 -7 1.98.10 -5 9.2.10 -8 4.6.10 -9 

R ( ~ )  Eq. 23(a )  Eq. 23(b)  Eq. 21 (a )  Eq. 21(b)  

5 8.4.10 -2 3.8.10 -2 1.6.10 i 7.4.10-2 

10 1.6.10 -2 5.0.10 -5 3.1.10 -2 9.6.10 -3 
15 3.1.10 -5 6.4.10 -4 6.0.10 3 1.2.10-3 
20 6.2.10 -4 8.2.10 -5 1.2.10 -3 1.6.10 -4 

From semiclassical approximation,  the transmission coefficient for an electron 
with energy E and momentum hk(r), approaching a potential barrier V(r), is 

I [ R/2 dr} (26) T = exp k(r) 
k.- d--R~2 

where k(r)= [ 2 m ( V ( r ) -  E)/h2] 1/2 and the integration runs over the classically 
forbidden region V(r)> E. The frequence of collision with the barrier for an 
electron with energy E, inside a potential well, is given by 

to = 2m ( h k ' ( r ) )  -1  dr . (27) 
dR~2 

From a two square well model (Fig. 3) [2, 16] 

Tab = hwT = [h2(E - V)/2ml2) 1/2 exp ( -aR)  (28) 

with a = (2mE~h2) 1/2. To compare a from Eq. (22) with this simple tunneling 
result, the meaning of E is assumed to be the same in the two expressions. With 
a frequence factor limited to 10  -16  s e c  -1 [16] a pre-exponential  factor of  1 eV is 
assumed to obtain Tab (Table 2). 

The simple model used by Halpern and Orgel [14] assumes a one electron atom 
A and the corresponding ion B § coupled by a closed shell bridging ion X - .  The 
initial and final states can be represented by 

at t t 
~ba= xaax/3aAalO> 

tit t t t~b = x~axl3aBalO) 

to calculate 

Tab = ( ~'lb I V] I[I a ) = < 6 B 6 X  ] Vl 6A 6X  > -- ( 6B~)X [ Vl 6x6A).  

(29) 

(30) 
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Fig. 3. The two square well model for electron transfer [2, 16] 

The first term in this equa t ion  is a direct in terac t ion  between (~A and  thB, the 
second term is in terpre ted as a concerted double  exchange interact ion.  It is 
interest ing to recall that  if V is a one-elect ron operator ,  and  zero-differential  

overlap is assumed,  the double  exchange con t r ibu t ion  vanishes.  

The superexchange  mechan i sm assumes a q u a n t u m  mechanica l  admixture  of 
excited states (virtual states) to the g round  configurat ion.  The model  presented 
in this work,  and  the related ones, are basical ly  on  the superexchange  mechanism.  
Indeed ,  the superexchange  mechan i sm is closely related to the t unne l ing  mechan-  
ism. The t ransfer  matr ix  approach  solves the p rob lem of t unne l ing  through a 
s t ructured barrier,  which is a model  for the 1-D chain. 
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